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communication, of a statement giving an x such that A(x) {Hilbert.
Bernays 1934 p. 32). But “A(x)" itself may in turn be an incomplete
communication. Accordingly let us say that “(Ex)4(x)" is an incomplete
communication, which is completed by giving an x such that A(x) to-
gether with the further information required to complete the com-
munication “A(x)” for that x.

The idea can be extended to the other logical operations. For example,
we can regard a generality statement "(x)A4(x)" intuitionistically as an
incomplete communication, which is completed by giving an effective
general method for finding, to any x, the information which completes
the communication ““A(x)" for that x.

Similarly, an implication "4 — B" can be regarded as an incomplete
communication, which is completed by giving an effective general
method for obtaining the information which completes ““B"’, whenever
that which completes “A4" is given.

Negation can be reduced to implication (cf. Example 3 § 74).

Now effective general methods are recursive ones, when it is a natural
number that is being given (§§ 60, 62, 63). Moreover, by the device of
Gddel numbering, information can be given by a number.

Combining these ideas, we shall define a property of a number-
theoretic formula which will amount to the formula’s being true under
the interpretation suggested. However, instead of saying ‘true’, we shall
say ‘(recursively) realizable’, to distinguish the property defined be!ow
from ‘truth’ as defined by using direct translations of the formal logical
symbols by corresponding informal words (end § 81).

The interpretation of a term t(x,, ..., x,) containing only x,, ..., Xs
free by a primitive recursive function {(x,, ..., x,), or for n =0 by a
number ¢, and the interpretation of a prime formula P(x,, ..., X.) by
a primitive recursive predicate P(x,, ..., z,), or for n = 0 by a prop-
osition P (end §81), do not differ intuitionistically from'?la!':Slcal.lY-
We build upon this in setting up the definition of ‘realizability which
interprets the logical operators intuitionistically as applied to number-
theoretic formulas.

First we define the circumstances under which a natural numbebl;f
‘(recursively) realizes’ (or is a ‘realization number’ of) a closed num o;)
theoretic formula E, by induction on the number of (occurrences
logical symbols in E.

(A) 1. e realizes a closed prime formula P, if ¢ =0 and P 18 true
(in other words, if ¢ = 0 and P).

IFor Clauses 2--5, A and B are any closed formulas.
2. ¢ realizes A& B, if ¢ := 2°-3° where a realizes A and b realizes B,

3. erealizes AV B, if e = 293 where a realizes A, or ¢ = 213" where
b realizes B.

4. ¢ realizes A D B, if ¢ is the Gédel number of a partial recursive
function ¢ of gne variable such that, whencver a realizes A, then g(a)
realizes B.

5. e realizes 1A, if e realizes A D 1=0,

For Clauses 6 and 7, x is a variable, and A(x) a formula containing
free only x.

6. e realizes IxA(x), if ¢ = 2%-3% where a realizes A(x).

7. ¢ realizes ¥VxA(x), if ¢ is the Gédel number of a general recursive
function ¢ of one variable such that, for every x, ¢(x) realizes A(x).

Now we define ‘(recursive) realizability’ for any number-theoretic
formula, thus. ‘

(B) A formula A containing no free variables is realizable, if there
exists a number p which realizes A. A formula A(Yy, ..., Ym) containing
free only the distinct variables y,, ..., y, (m > 0) is realizable, if there
exists a general recursive function ¢ of m variables (called a realization
function for A(y,, ..., y.)) such that, for every ¥, - vy Yoo (V1o ¢ - o0 ¥iu)
realizes A(y,, ..., yn). (Using §44, if a given formula is realizable
for one choice of the y,, ..., y,., it is for every other.)

The handling of thz free variables in the present definition of real-
izability differs from that in Kleene 1945. It simplifies the proof of the
first theorem (Theorem 62), after which the equivalence of the two
definitions will follow (by Corollary 1).

The above definition of realizability refers only to our notion of number-
theoretic formula, i.e. to the formation rules of our formal system.

A modified notion of realizability, referring to the postulate list of the
System, and to assumption formulas I" if desired, is obtained by altering
three clauses, as follows. Clause 3: replace “a realizes A" by “'a rcaliz:s
Aand I' } A", and “b realizes B" by “b realizes B and T + B".
Clause 4: replace “a realizes A" by “a realizes Aand T' + A:'. Clau'se 6:
Teplace “a realizes A(x)" by “a realizes A(x) and T' | A(x)". For. real-
i(lres' (‘realizable’} in this modified sense we say realizes-(I' ) [realizable-

.
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THEOREM 628, (a) If T } E in the intuitionsstic number-theoretic
formal system, and the formulas T are realizable, then E is realizable
(David Nelson 1947 Part 1.) ’

(b) Similarly reading “realizable-(T' )" in place of *realizable’.

LeMMa 448, If x is a variable, A(x) is a formula withou! [rec variables
other than x, and t is a lerm withou!t variables which hence expresses a numbey
t, then e realizes A(t) if and only if ¢ realizes A(t).

ProOOF OF LEMMA 44. If A(x) is prime, then whether A(t) is true is
equivalent to whether A(t) is true. Hence by Clause 1, the lemma holds
for a prime A(x). The lemma for any other A(x) follows from this basis
by induction on the number of logical symbols in A(x), with cases cor-
responding to the other clauses in the definition of ‘realizes’.

LemMMa 45N, If E is a closed formula, then ¢ realizes E if and only
if e realizes the result of replacing each part of E of the form — A where A is
a formula by A D 1=0. :

Lemmas 44 and 45 also hold reading “T" | or “¢ realizes-(T" })” in
place of “¢ realizes”, when | refers to the intuitionistic number-theoretic
system, and I' are any formulas. (For Lemma 44 we then use (A) § 41
with Theorem 24 (b) § 38.)

PrOOF OF THEOREM 62. We state the proof for (a), and (optionally)
the reader, by taking slight extra care, can verify that the additional
conditions are met for (b). The proof is by induction on the length of the
given deduction I' - E, with cases corresponding to the postulates of
our formal system.

First we consider axioms. If A(y,, ..., y.) is an axiom containing as
its only free variables y,, ..., y., then by (B) to establish its realiz-
ability we must give a general recursive function ¢(y,, ..., y.) such that,
for every m-tuple of natural numbers y,, ...,y,, the number
?(1 - - -, Ym) Tealizes A(y,, ..., ¥.). However, for each of the axiom
schemata of the propositional calculus, we shall be able to find a number
which realizes A(y,, ..., ¥.) for any axiom A(y,, ..., y.) by the schema.
It will suffice to give this number (which realizes the closed axioms by the
schema), because when free variables y,, ..., y, are present, we can take
as ¢(y;. - - -, ¥m) the constant function of m variables with this number
as value (§44). Similarly for the particular number-theoretic axioms,
we shall merely give a number which realizes the result of any sub-
stitution of numerals for the free variables of the axiom. Similarly for
Axiom Schema 13, we can give a realization number, as a genera.l re-
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cursive function of x, which depends only on the numeral x substituted
for x; and for each of Axiom Schemata 10 and |1 one can be given, as
a general recursive function of x,, ..., x,, which depends only on the
t and on the numerals x,, ..., x, substituted for its variables x,, ..., x,.
Then when the y,, ..., y, include other variables, the o(y,, ..., yu)
can be obtained by expanding that function into a function of the
required additional variables by use of identity functions (§ 44).

For each of the axiom schemata and particular axioms (§§ 19, 23),
we shall express our realization number or function using the notations of
§ 65. The proof that it is a realization number or function, and the
necessary verifications of recursiveness, are left to the reader in cases not
discussed in detail.

la. In accordance with the preliminary remarks, consider an axiom
A O (B D A) by this schema containing no free variables. We show
that AaAba, i.e. AaAbU3(a, d) (§ 44), realizes A D (B D A). For let
a realize A; by Clause 4, we must show that {AaAba)(a), i.e. Aba (by
(71) § 65), realizes B D A. To show this, let b realize B; we must show that
{Ab a)(b), i.e. a, realizes A. But a does realize A, by hypothesis,

th. (ADB)D((AD(BDC)) D(ADC)) is realized by
ApAgAa (g(a))(p(a)). For let p realize A D B; we must show that
(APAgAG{g(@))(p(@)}(p). i.e. AgAa ig(a))(p(a), realizes (A D (B D C))2
(A D C). To show this, let ¢ realize A O (B D C); we must show that
Aa {g(a)}(p(a)) realizes A D C. To show this, let a realize A; we must
show that {g(a)}(#(a)) realizes C. Now by hypothesis, p realizes A O B
and a realizes A; hence p(a) realizes B. Moreover ¢ realizes A D (B 2 C),
and a realizes A; so g(a) realizes B O C. But now g(a) realizes B 5 C,
and p(a) realizes B; hence {g(a)}(p(a)) realizes C, as was to be shown.

3. AD(BDOA&B). AaAb 2°-3b.
4a. A&BDA. Ac(c) (cf. #19 §45). 4b. A&B D B. Ac({c),.
Sa. ADAVB. Aa2%3% 5. BDAVB. AM2.3

6. (ADC)D((Bo2C)D>(AVBDJ().

ApAgAr y(p. q. r) where

2(p- 4. 7) = [ Plirhy) if (F)o = O, q{{r)y) if ()o == 1], using Theorem XX (c).
Suppose p realizes A D C, ¢ realizes B2 C, and r realizes AV B; we
must show that x(p. g, r) realizes C. Casg 1: 7 = 2°3° where a realizes A.
Then (r)g == 0 and (), = a. Since p realizes A 5 C and (r), realizes A,
pl(r),) realizes C. But (r)g = 0; so (and because p((r),) is defined)
P q.r) = pl(r),). and so it realizes €, as was to be shown. Casg 2:
r == 20.3% where b realizes B. Similarlv.
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7.. (A D'B) O ((A D ~-B) DA). Using Lemima 45, the number
which r'eallzes the closed axioms by Axiom Schema Ib (in particular
those with 1=0 as the C) realizes those by this schema.

8'. “AD(ADB). 0. For if p realizes 7A, then by Clause 5 ?
realizes A D 1=0. But then no number a can realize A, since pla) wo;xld
realize the false closed prime formula 1=0, contradicting Clause 1. Thus
vacuously, if p realizes 7 A and a realizes A, then {0(p)}(a) realizes B.

(The reader may find it instructive to verify that there is no apparent
way to treat the classical Axiom Schema 8.)

10. Let the t for the axiom contain exactly the distinct variables
Xy, -.., X, (82 0); denote it as “t(x,, ..., x,)", and let f(x,, ..., x,)
Pe the primitive recursive function (or for # = 0, the number) whic'iu
it expresses. By the prcliminary remarks, we suppose the axiom contains
free only x,, ..., x,: if none of x,, ..., x, is x, let it be VxA(x, x,,
see Xa) D A(t(xy, ..., Xa), Xy, ..., X,). Since t(x,, ..., x,) is free for x
m A(x,x,, ..., x,), the result of substituting numerals x,, ..., x,
for (the free occurrences of) x,, ..., x, in the axiom is VxA(x, x,, ..., x,)
D Alt(xy, ..., x,). %, ..., x,). We shall show that the number
I}ﬁ P(¢(x,, ..., x,)), which as z,, ..., x, vary is a general (in fact, primi-
tive) recursive function of x,, ..., x,, realizes this formula. By Clause 4,
for this purpose we must show that, if p realizes VxA(x, x,, ..., X,),
then p(/(x,, ..., x,)) realizes A(t(x,, ..., x,),x,, ..., x,). But, if p
realizes VxA(x, x,, ..., x,), then by Clause 7, p({(x,, ..., x.)) realizes
A(t, x,, ..., x,) where ¢t ={(x,,...,x,); and hence by Lemma 44,
p(Uxy, - .., x,)) also realizes A(t(x,, ..., x,), X,, ..., x,). — If say x, is x,
the axiom is Vx,A(x,, ..., x,) DA(t(x,, ..., X,), X5 ....X,), etc.

L A(t(xy, ..o Xa)s Xy, -1 0, X,) D 3xA(X, Xy, ..., X,).
Aa 2‘(:.....,:,.)_30.

13. A(0) & Vx(A(x) 2 A(x")) D A(x). We treat the case -that the
A(x) contains free only x, as the preliminary remarks will then take care
of the general case. Let a partial recursive function p(x, a) be defined by a
primitive recursion thus,

{ p(0, a) = (a)o.
plx’, a) = {{(a)}(x)}(p(x, a)).

Now we show that for every x the number Aa p(x, a), which is a primitive
recursive function of x, realizes A(0) & Vx(A(x) D A(x')) D A(x). To
do so (Clause 4), we prove by induction on x that, if a realizes
A(0) & Vx(A(x) D A(x’)), then p(x, a) realizes A(x). Basis. If a realizes
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A(0) & Vx(A(x) D A(x’)), then by Clause 2, p(0, a) [= (a),] realizes A(0).
Inp. sTEP. Similarly (a), realizes Vx(A(x) D A(x")), and hence (Clause 7)
{{a),}{x) realizes A(x) D A(x’). But by hyp. ind., p(x, a) realizes A(x).
Hence (Clause 4), p(x’, a) [= {{{a);}{x)}(p(x, a))] realizes A{x).

14. After substitution of numerals, we have from this axiom
a’'=b’ O a=b. This formula is realized by Ap 0. For suppose p realizes
a’=b’. We must show that then O realizes a=b. Since a’=>b’ is prime, it
is only realizable if it is true, i.e. if a’ = ¥’. Then a = b, so a=b is also
true, and O realizes it.

Similarly, for the other particular axioms, after substituting numerals,
we have realization numbers as follows.

15, 18 —21: 0. 16: ApAqO. 17: ApO.

RULES OF INFERENCE. 2. We take advantage of the remark accompa-
nying the definition of realizability to regard the formulas as each de-
pendent on all of the variables occurring free in any of them. Thus we
write the rule

Alyy, - ¥m) Al .-+ ¥m) D Blyr -+ ¥m)
By, - s Ym)-

By hypothesis of the induction, the premises Ay, ..., ym) and
A(Yy ... ¥m) D B(yy, - ... ym) are realizable, ie. there are general
recursive functions « and ¢, such that, for every m-tuple of natural
numbersy,, ..., ¥m A, - - ., ¥) is realized by the number a(y,, ..., Ym)
and A(y,, ....¥m) 2B, ..., ¥.) by the number ¢y, ..., Y )
Then the number {¢(y,, - ... ¥Ym)Ha(¥y. - ... ¥=)) realizes By, ..., ¥Ym).
Moreover, {${(yy, « ... ¥m)Ha¥y. - - .. ¥m)) is obviously a partial recursive
function of y,, ..., ym- But its value is a realization number for every
Y10 - - +» Yme 5O it must be defined for every y,, ..., ya: thus it is general
recursive. Thus the conclusion B(y,, ..., y.) is realizable.

9. Clyr - - ¥m) DA, Yy -1 Ym)
Clyp -+ ¥Ym) D VXA(X, Y31 -+ -0 Ym)-

By the hypothesis of the induction and the definition of realizability,
there is a general recursive function ¢ such that, for every x, y1, ..., ¥m
(X, Yy .. -0 Ym) Tealizes C(yy, -...¥m) DAX. Y1 ..., Ya). We shall
prove that, for every ¥, ...,%m AcAx{d(x, ¥, ..., ya)}c) realizes
C(yy -+ .1 Ym) D VXA(X, ¥y, ..., ¥m). This will give the realizability of
the conclusion, since AcAx {$(x,¥,. - - ., ¥w))(c) is a primitive recursive, a
fortiori general recursive, functionof y,, ..., ya. Accordingly suppose that
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c re.alizes Cs ---.¥a): we must show that Ax {{(x, 9, ..., ¥.)}(c)
realizes YxA(x, y,. ..., ¥=). To do this, we must show that, for every x
{$(x, ¥10 ..., ym)}(c) realizes A(x,y,, ..., y.). But since ¢ rea.lizeg:
Cyy .., ym), and by hyp. ind. §(x, y,, ..., y.) realizes C(y,, .. wYm) D

A(xp y]n L -.ym)- {q’(z' yll MR y'n)}(c) doeS realize A(x’ yl’ .. --J’n)-
(Note how this treatment would break down, if the C contained x free,
callit “C(x, y,, ..., ¥m)""- Then, we would have to assume that ¢ realizes
C(x, ¥, ..., Ym) for some x, and we could conclude only that
{d(x, ¥1, ..., Ym)}(c) realizes A(x,y,, ..., y.) for that x, whereas we
would need to conclude it for every x.)

12. AX, ¥ - o Ym) 2C(Yy - oo V)

IXA(X, Y1 - -2 ¥Ym) D C{y1s -+ Y-

Similarly, using Ap {$((P)e. ¥1. - - -» Y=)}{((P))) as realization function for
the conclusion, given that ¢ is for the premise.

The theorem includes the simple consistency of the intuitionistic
formal system of number theory (by using (a) with I" empty and 1=0
as the E), as does Theorem 6! (a). The additional interest in Theorem
62 in this connection stems from the different condition on new axioms
I’ under which it is shown that the simple consistency is preserved (as
we shall discuss further following Theorem 63).

' CoroLLARY IN. I}y, ..., y. aredistinct variables, and A(y,, ..., Ym)
s a formula, then A(y,, ..., Y.) is realizable, if and only i}
VY;s oo . YYQRA(Y,, - - -, Yom) 8 realszable.

For A(y,, ..., ym) and Vy, ... Vy.A(y;. ..., Ya) are interdeducible
in the intuitionistic formal system.

This corollary (applied to the case y,, ..., y,, are the free variables
of the given formula in order of first free occurrence) gives the equivalence
of the present version of the definition of realizability (Kleene 1948)
to that of Kleene 1945.

COROLLARY 2N, (a) If T are realizable formulas, A(x,, ..., X,, y)i5 @
formula containing [rec only the distinct variables x,, ..., X, y, and
I | 3yA(xy, ....X,.,y) in the intustionsstic number-theoretic formal
system, then there is a general recursive funclion y = ¢(x,, ..., x,) such
that, for every x,, ..., %, A(X,, ..., X, y) (where y = g(x,, ..., %a)
is realizable.

(b) Ssmilarly readsng in place of “realizable’ any one of the following
combinations of properties: (i) “realizable-(I' }) and deducible from T,
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(ii) “‘realizable-(T' V), deducible from T, and truc”, (iii) “'realizable-(T' ),
deducible from T', and realizable””, (iv) ‘‘realizable-(T' ), deducible from T,
true and realizable”.

ProoFs. (a) By (a) of the theorem with (B) and (A) 6 of the definitions.
{b) (i) Using instead (b) of the theorem. (ii) Using further Theorem 61 (a)
to infer that A(x,, ..., X,, ) is true. (iii} Using further (a) of the theorem
to infer that A(x,, ..., X, ¥) is realizable.

Realizability is intended as an intuitionistic interpretation of a formula;
and to say intuitionistically that A(x,, ..., X,, ) is realizable should
imply its being intuitionistically true, ie. that the proposition
A(z,, ..., %,, y) constituting its intuitionistic meaning holds. The formula
JyA(x,, ..., X, y) asserts the existence, for every x,, ..., *a, of a y
depending on x,, ..., x,, such that A(x,, ..., xa,¥); or in other words,
the existence of a function y = ¢(x,, ..., x.) such that, for every
Xy, ooor Xn A%y, ooy X 9%, ..., %4). By (a) of the corollary for T’
empty, that formula can be proved in the intuitionistic formal system,
only when there exists such a ¢ which is general recursive. In brief,
only number-theoretic functions which are general recursive can be
proved to exist intuitionistically. (We are here considering the assertion
of the existence of a function value ¢(x,, ...,x,) for all n-tuples
x,, ..., x, of arguments, so this is not in conflict with our use intu-
itionistically of partial recursive functions.)

This result as inferred from (a) depends on accepting the thesis that
the realizability of A(x,, ..., X., y) implies its truth. However by
using (b) for " empty (in which case, since we have no hypothesis on
[ to satisfy, we may take the strongest form (iv) in the conclusion, i.e.
that A(x,, ..., X,, y) is realizable-(}-), provable, true and realizable),
we obtain the same result independently of that thesis.

The presence of the T in the corollary shows that the result will hold
good upon enlarging the formal system by any suitable axioms I'. If
the thesis that realizability implies truth, intuitionistically, is accepted,
these need only be realizable. Otherwise they should be realizable-(I" )
and true (deducibility from T holds automatically in the hypothesis on T’).

The result provides a connection between Brouwer’s logic as formalized
by Heyting and Church’s thesis (§ 62) that only general recursive functions
are cffectively calculable. Both developments arose from a constructivistic
standpoint, but were previously unrelated in their details.

The formula 3yA(x,, ..., x., y) does not assert the uniqueness of
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T —

the function y = o(x, ..., x,) such that A(x,, ..., x,., o(x,, ..., x));
for this we need 3!'yA(x,, ..., x,. y) (§41). '

Classically, given the cxistence of some function ¢ such that, for aJ)
Xy, oo, %, Alxy, ... x. @(x,, ..., x,)), the least number principle
provides formally a method of describing a particular one (*149 § 40,
*174b § 41). While we do not have the least number principle intuition-
istically, we do know by Corollary 2 that, whenever a particular intu-
itionistic proof of a formula of the form IyA(x,, ..., x,, y) is given, we
can on the basis of that proof describe informally a particular genera]
recursive function ¢(x,, ..., x,) such that, forall x,, ..., x,, A(x,, ..., x,,

?(xl' MR xu))‘

ExampLE 1. (Cf. Example 8 (c) §74.) Let S, be the intuitionistic
number-theoretic system. Let A(x, y) be a formula containing free only
x and y. Suppose that for cach x, the formula A(x, y) is true for exactly
one y. Then when (to obtain S,) we introduce f with the axiom A(x, f(x)),
the axiom characterizes f as expressing a certain function ¢ under the
interpretation. By 3-introd. from the new axiom, I, 3yA(x, y). Now
suppose f with the axiom A(x, {(x)) is eliminable. Then F, 3yA(x, y).
Then by Theorem 62 Corollary 2 (b) (ii) with T empty, there is a general
recursive function y = ¢,(x) such that, for each x, A(x, y) is true. But then
@1 = ¢. Thus in the inlustionsstic number-theoretic system, a new funclion
symbol f (expressing a Junction @) introduced with an axiom of the form
A(x, f(x)), where A(x, y) conlains free only x and y, and A(x,y) is true
exactly when y = ¢(x), ts eliminable only when ¢ is general recursive.

ExampLE 2. Let A(x, y) be any formula, containing frce only x and y,
such that }, 3yA(x, y). Then as in Example 1, there is a general re-
cursive function y = ¢,(x) such that, for each x, A(x,y) is true. The
demonstration of this (consisting mainly in the proof of Theorem 62 (b))
is constructive; given a proof of 3yA(x, y) (or the Gédel number of such
a proof), we can find a system E of equations defining a ¢, recursively
(or a Godel number of ¢,). Also it is effectively decidable whether a
number a is the Godel number of a proof of a formula of the form
JyA(x, y) where A contains free only x and y (CasE 1), or not (Cask 2). Let

0(a) = { a Gaodel number of ¢, in Case 1,
| Axx (i.e. a Gédel number of U!}), in Case 2,

where ambiguity as to which Gédel number of which ¢, (or which Godel
number of U :) is chosen is removed by suitable conventions. Then 0{(a)
is effectively calculable. So by Church’s thesis we may expect that 0{a)
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is general recursive. (In fact, it is casy to prove that Oa) is primitive
recursive, after establishing: (1) There is a primilive recursive function
E(a) such that, if a is the Gidel number of a proof in the intuttionistic number-
theoretic system, then E(a) is a (odel number of a realization-(}) function
(Vs -« -0 Yw) for the endformula Aly,, ..., ym), where y,, ...,y are the
[ree variables of the endformula in order of occurrence in our list of the
variables.) Let @(x) = {0(x)}(x)+ 1. Then ¢(x) is general recursive. Now
let A(x, y) be a formula such that A(x, y) is true exactly when y = ¢(x)
(c.g. one which numeralwise represents ¢, cf. Theorem 32 (a) §59). If
we now take this formula as the A(x, y) of Example 1, we are led to a
contradiction by supposing that f with the axiom A(x, f(x)) is eliminable.
Thus: (2) There is a general recursive function ¢ such that, in the intu-
stionistic number-theoretic system, a new function symbol { expressing ¢ with
an axiom of the form A(x, {(x)), where A(x, y) conlains frec only x and y,
and A(x, y) is true exactly when y = ¢(x), is not eliminable (and 3yA(x, y)
is nol provable for any such A(x,y)).

THEOREM 63%. For suitably chosen formulas A(x), B(x) and C(x,y).
the [ollowing classically provable formulas are unrealizable and hence
(by Theorem 62 (a)) unprovable in the intuitionistic formal syslem of
number theory. (Specifically, let A(x, 7) numeralwise express the predicale
T,(x, x, z) of § 57, using Corollary Theorem 27 § 49. Let A(x) be 3zA(x, z),
B(x) be A(x) V 7A(x) and C(x, y) be y=1V (A(x) & y=0).)

(i) A(x) Y 11 A(x).

(ii) Vx(A(x)V —1A(x)) (the closure of (i)).

(i) —VYx(A(x)VA(x)) (the double negation of (ii)).
(iv) Vx = B(x) D = VxB(x).

(v) == {Vx =~ B(x) D 7VxB(x)} (the double negation of (iv)).

(vi) 3yC(x,y) 2 3y[C(x, y) & Vz{z<y D C(x, 2))] (cf. *149 § 40).

(vii) Iy[y <w & C(x, y) & Vz(z<y D 7C(x,z))] V Vy[y<w D C(x, y)]
(cf. *148).

Also the closure, and the double negation of the closure, of (vi) and of (vii).
((i)) — (v): Kleene 1945 with Nelson 1947.)

LEMMA 468, (a) I} A is realizable, and B is unrealizable, then A O B
is unrealizable. Hence: 1 A is realizable, then ~ A is unrealizable. (b) If
A 1s closed and unrealizable, then A D B and (hence) A are realizable, and
(by (2)) A is unrealizable.
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ProOF oF LEMMA 46. (a) By Theorem 62 (a) or the case for Rule 2
in its proof, if A and A D B are realizable, so is B. (b) For a closed B
any number, e.g. O, realizes A D B, since vacuously, whenever a realizeg:
A (i.e. never), O(a) realizes B.

Lemma 47%. If P(x,, ..., x,) numeralwise expresses a general ye.
cursive predicate P(x,, ..., x,) in the intustionistic formal system of number
theory, then, for every %, ..., xa, P(x,, ..., x,) is realizable if and only if
Plx,, ..., x,).

PRroOF oF LEMMA 47. If P(x,, ..., x,), thenby § 41 (i), + P(x,,...,x,),
and hence by Theorem 62 (a), P(x,, ..., x,) is realizable. Conversely,
suppose P(x;, ..., x,) is realizable. Because P(x,, ..., x,) is a general
recursive predicate, we have (constructively) that, for the given
Xy, ..., %a, either P(x,, ..., %) or P(x,, ...,x,). In the latter case,
however, by §41 (ii), + = P(x,, ..., x,), and hence by Theorem 62
(a), = P(x,, ..., x,) is realizable, which by Lemma 46 (a) contradicts
our supposition that P(x,, ..., x,) is realizable.

Proor oF THEOREM 63. (i) Suppose (i), i.e. IzA(x, z) V =13zA(x, z),
were realizable. Let ¢(x) be a realization function for it; and set
p(x) = (p(x))o. Then p(x) is general recursive, and takes only the values
Oand 1 (by (B) and (A) 3 of the definitions). Consider any fixed x. Case 1:
p(x) = 0. Then (p(x)), realizes 3zA(x, z); and hence (p(x)), , realizes A(x, 2)
where z = (p(x)),o, in which case by Lemma 47, T\(x, x,z). Thus
(Ez)Ty(x, x, z). Case 2: p(x) = 1. Then (p(x)), realizes ~3zA(x, z), i.e.
(p(x)), realizes 3zA(x, z) D 1=0. We shall show that then (Ez)T,(x, %, 2).
For if there were a z such that T(x, x, z), by Lemma 47 A(x, z) would be
realizable; say k realizes it. Then 2:-3* would realize 3zA(x, z); and
{(9(%)),}{2*-3*) would realize 1=0, which is impossible. The two cases
show that the general recursive function p(x) is the representing function
of (Ez)T,(x, x,z). But (Ez)T,(x, %, 2) is non-recursive ((15) Theorem
V §57); hence no such general recursive p(x) can exist. By reductio ad
absurdum, therefore (i) is unrealizable.

(i), (iii). By V-elim. (i) is deducible intuitionistically from (ii), so
by Theorem 62 (a) also (ii) is unrealizable; and by Lemma 46 (b) so 1S
(iii), since (ii) is closed.

(iv) Since (iii) can be deduced from (iv), using *Sla § 27 and V-introd.

(vi) We show as follows that (i) is deducible from (vi). From .l=l
(which is provable) by V- and 3-introd., 3yC(x, y). Using this, from (vi) by
S-clim., 3y[C(x, y) & Vz(z <y D ~C(x, 2))]. Preparatory to & and

v s ——— .

-
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3-elim., assume C(x, y), i.e.

(N y=1V (A(x) & y=0)

and Vz(z<y D C(x, 2)), i.c.

(2) Vz(z<y D {z=1V (A(x) & z=0)}).

We use proof by cases from (l) to deduce (i) with the help of (2).
Case 1; assume y=]. For reductio ad absurdum, assume further

A(x). From this and 0=0, by &- and V-introd., 0=1V (A(x) & 0=0).
But also from y=1 by *135b, O<y; and thence from (2) by V-elim.
(with O as the t) and D-elim.,, ={0=1V (A(x) & 0=0)}. Hence by re-
ductio ad absurdum, ~A(x). By V-introd., A(x) V = A(x), which is (i) and
does not contain free the variable y of our proposed 3-elim. CAse 2: assume
A(x) & y=0. By &-elim. and V-introd., A(x)V 1 A(x). (This deduction
is related to the intuitive reasoning of Example 6 § 64.)

(vii) From (vii) we can deduce (vi}, as in the proof of *149 from *148.

Theorem 63 (i) — (v) imply that <4 V = <A is unprovable in the intu-
itionistic propositional calculus, and Vx(A(x)V =1 A(x)),
A Vx(A(x) V1 A(x)), Vx=1d(x) D 9 VxA(x) and
a{Vx = A(xr) D mVxred(x)} in the intuitionistic predicate calculus,
as we already knew from Theorem 57 (b) and Theorem 58 (a) and (c).
The present proofs are less elementary than those based on Gentzen's
normal form theorem, but contribute insight into the working of the
intuitionistic logic as an instrument for number-theoretic reasoning.
We succeed in showing A V-—=1A unprovable in intuitionistic number
theory only in the presence of a free variable x.

CoroLLARY (to (ii))N. The formula aAVx(A(x) V2 A(x)) (although the
negation of a classically provable formula) s realizable.

By (ii) and Lemma 46 (b).

The formula Yx({A(x)V =vA(x)) is classically provable, and hence under
classical interpretations true. But it is unrealizable. So if realizability
is accepted as a necessary condition for intuitionistic truth, it is untrue
intuitionistically, and therefore unprovable not only in the present
intuitionistic formal system, but by any intuitionistic methods whatsoever,

This incidentally implies that our classical formal system reinforced
by an intuitionistic proof of simple consistency cannot serve as an in-
strument of intuitionistic prool, as suggested in § 14, except of formulas
belonging to a very restricted class (including those of the forms B(x)
and ¥xB{x) end § 42, but not the present formula Vx(A(x) V A ().
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The negation " Vx(A(x) V - A(x)) of that formula is classically untrye

but (by the corollary) realizable, and hence intuitionistically true, if wé
accept realizability (intuitionistically established) as sulfficient for intu.
itionistic truth.
. Sc.> the possibility appears of asserting the formula TVX(A(X)V = A(x))
intuitionistically. Thus we should obtain an extension of the intuitionistic
number theory, which has previously been treated as a subsystem of the
classical, so that the intuitionistic and classical number theories diverge
yvith Vx(A(x) V = A(x)) holding in the intuitionistic and Vx(A(x) V = A(x)).
in the classical.

Such divergences are familiar to mathematicians from the example of
Euclidean and non-Euclidean geometries, and other examples, but are
a new phenomenon in arithmetic. The first example comes by adjoining
A ,(p) or 1A (p) to the number-theoretic formalism, cf. end §§ 42 and 75.

Not only is the formula " Vx(A(x)V 2 A(x)) itself realizable, but by

Theorem 62 (a) (taking it as the I'), when we add it to the present intu-
itionistic formal system, only realizable formulas become provable in the
enlarged system. So then every provable formula will be true under the
realizability interpretation. In particular, the strengthened intuitionistic
system is thus shown by interpretation to be simply consistent.
. A fuller discussion is given in Kleene 1945, where the proposed ad-
junctions to the unstrengthened intuitionistic formal system of number
theory S, to obtain a strengthened intuitionistic system S’ diverging
from the classical S.. are in the form of an identification of truth with
realizability.

Refinements of the results which we are basing here on interpretation
are obtained by Nelson 1947 Parts 11—IV (with Kleene 1945). Because
they all involve the consistency of the number-theoretic formalism, no
completely elementary treatment can be expected. But the non-elemen-
tariness is minimized in the results based on this further work of Nelson
to the full extent that the results are proved in alementary metamathe-
matics under the hypothesis of the simple consistency of S. In particular,
by these results with those of Godel 1932-3 (cf. Corollary 2 Theorem 60),
it is demonstrated metamathematically that both S* and S, are simply
consistent if S is. (Nelson takes as his S not our intuitionistic formal
system but one obtained, apart from an inessential difference in the
equality postulates, by adjoining to ours some additional function
symbols with their delining equations. These equations fit our schemata
(I) — (V) §43 or closely similar schemata, except that also a certain
schema of course-of-values recursion is allowed. Using Nelson's (i) — (iv)
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p. 332, to each application of that schema a pair of equations having the
same form with f, g, h, t; replaced by i, g, h', t; is provable without the
application; so the course-of-values recursion schema is climinable. Then
by Example 9 § 74 with the remarks preceding it, the additional function
symbols are eliminable.}

Nelson 1949 introduces a notion of ‘P-realizability’, using which one
can set up a number-theoretic system diverging from both the strength-
ened intyitionistic and the classical.

Gene Rose 1952 investigates realizability in relation to the intu-
itionistic propesitional calculus.

Kleene 1g50a plans the use of recursive functions in interpreting

intuitionistic set theory.

ExaMPLE 3. (a) The operators D, ~, &, V applied to closed formulas
A and B obey the strong 3-valued truth tables (§ 64, restated with the present
symbols), when t, |, u are read as ‘realizable’, ‘unrealizable’, 'unknown (or
value immaterial)’, respeclively; i.e. the tables then give only correct
information about the realizability or unrealizability of A DB, 0A,
A & B, AV B, when entered from such information about A and B. Proor.
Consider D. If B is realizable, then by *11 §26 with Theorem 62 (a),
sois A D B, corresponding to the three t's in Column 1 of the table for O.
If A is unrealizable, then by Lemma 46 (b), ADB is realizable, corre-
sponding to the three t's in Row 2. If A isrealizable and B is unrealizable,
then by Lemma 46 (a), A D B is unrealizable, corresponding to the { in
Row 1 Column 2. The table for = is simply the f column of that for 2;
and & and V are easily treated. (b) A formula without variables is realizable,
if and only if it is true. Its realizability (and truth) or unrealizability
(and falsity) is thus effectively decidable by the valuation procedure
furnished by the usual interpretation of 0, ‘4, -, = and the classical
2-valued truth tables for D, =1, &, V (cf. § 79 before Theorem 5l).
PROOF by using Example 4 § 81, or thus: For closed prime formulas, truth
and realizability agree, and can be decided. In building thence composite
formulas by the operations of the propositional calculus, we always
remain within the first two rows and columns of the 3-valued tables.
(c) We call a number ¢ an R-valuation number of a closed formula E, if
either e = 2937 (then ¢, = (¢),) and ¢, realizes I, or ¢ = 2'-3% and E is
unrcalizable. For open formulas, R-valuation Junction is defined in analogy
to ‘realization function’. A formula C(z,, ..., 2a) contarning no qmuui-
fiers and only the distinct variables z,, ..., Zm (m > 0) has a pn’mihvc

X

recursive R-valuation function v(z,, ..., z,). PROOF (omitting“'z,, ..., %m



